Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zool Res ; 45(2): 233-241, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38287904

RESUMO

Neural tube defects (NTDs) are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure. Although folate supplementation has been shown to mitigate the incidence of NTDs, some cases, often attributable to genetic factors, remain unpreventable. The SHROOM3 gene has been implicated in NTD cases that are unresponsive to folate supplementation; at present, however, the underlying mechanism remains unclear. Neural tube morphogenesis is a complex process involving the folding of the planar epithelium of the neural plate. To determine the role of SHROOM3 in early developmental morphogenesis, we established a neuroepithelial organoid culture system derived from cynomolgus monkeys to closely mimic the in vivo neural plate phase. Loss of SHROOM3 resulted in shorter neuroepithelial cells and smaller nuclei. These morphological changes were attributed to the insufficient recruitment of cytoskeletal proteins, namely fibrous actin (F-actin), myosin II, and phospho-myosin light chain (PMLC), to the apical side of the neuroepithelial cells. Notably, these defects were not rescued by folate supplementation. RNA sequencing revealed that differentially expressed genes were enriched in biological processes associated with cellular and organ morphogenesis. In summary, we established an authentic in vitro system to study NTDs and identified a novel mechanism for NTDs that are unresponsive to folate supplementation.


Assuntos
Proteínas do Citoesqueleto , Defeitos do Tubo Neural , Animais , Proteínas do Citoesqueleto/metabolismo , Tubo Neural/metabolismo , Macaca fascicularis , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/veterinária , Células Neuroepiteliais/metabolismo , Ácido Fólico/metabolismo , Organoides , Citoesqueleto
2.
Brain Behav ; 13(9): e3027, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37464725

RESUMO

OBJECTIVE: Anxious behaviors often occur in individuals who have experienced early adversity. Anxious behaviors can bring many hazards, such as social withdrawal, eating disorders, negative self-efficacy, self-injurious thoughts and behaviors, anxiety disorders, and even depression. Abnormal behavior are is closely related to changes in corresponding circuit functions in the brain. This study investigated the relationship between brain circuits and anxious behaviors in maternal-deprived rhesus monkey animal model, which mimic early adversity in human. METHODS: Twenty-five rhesus monkeys (Macaca mulatta) were grouped by two different rearing conditions: 11 normal control and mother-reared (MR) monkeys and 14 maternally deprived and peer-reared (MD) monkeys. After obtaining images of the brain areas with significant differences in maternal separation and normal control macaque function, the relationship between functional junction intensity and stereotypical behaviors was determined by correlation analysis. RESULTS: The correlation analysis revealed that stereotypical behaviors were negatively correlated with the coupling between the left lateral amygdala subregion and the left inferior frontal gyrus in both MD and MR macaques. CONCLUSION: This study suggests that early adversity-induced anxious behaviors are associated with changes in the strength of the amygdala-prefrontal connection. The normalization of the regions involved in the functional connection might reverse the behavioral abnormality. It provides a solid foundation for effective intervention in human early adversity. SIGNIFICANCE STATEMENT: This study suggests that early adversity-induced anxious behaviors are associated with changes in the strength of the amygdala-prefrontal connection. The higher the amygdala-prefrontal connection strength, the less stereotyped behaviors exhibited by monkeys experiencing early adversity. Thus, in the future, changing the strength of the amygdala-prefrontal connection may reverse the behavioral abnormalities of individuals who experience early adversity. This study provides a solid foundation for effective intervention in humans' early adversity.


Assuntos
Ansiedade , Privação Materna , Humanos , Animais , Tonsila do Cerebelo/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Córtex Pré-Frontal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...